

久留米大学医学部(推薦)数学

2019年11月16日実施

解答

解答記号	正解
ア	6
$\sqrt{1}$ + $$	$\sqrt{3}+1$
エ	2
$\sqrt{\pi}$	$\sqrt{3}$
カ√キ	$3\sqrt{3}$
	2

解説

$$\sqrt{3} = 1.73 \cdots$$
 より, $5 + \sqrt{3} = 6.73 \cdots$ となるので,

$$a = 6$$
, $b = (5 + \sqrt{3}) - 6 = \sqrt{3} - 1$, ゆえに $\frac{1}{b} = \frac{\sqrt{3} + 1}{2}$ である.

これより、
$$\frac{b}{2} + \frac{1}{b} = \frac{\sqrt{3}-1}{2} + \frac{\sqrt{3}+1}{2} = \sqrt{3}$$
 となるので、

$$\frac{b^3}{8} + \frac{1}{b^3} = \left(\frac{b}{2} + \frac{1}{b}\right)^3 - 3 \cdot \frac{b}{2} \cdot \frac{1}{b} \cdot \left(\frac{b}{2} + \frac{1}{b}\right) = (\sqrt{3})^3 - 3 \cdot \frac{1}{2} \cdot \sqrt{3} = \frac{3\sqrt{3}}{2} \ \text{E.s.}$$

- 2. k を正の定数とし、座標平面上で表される円 $C: x^2+y^2-8x-10y+36=0$ 、直線 $\ell: 2x-y+k=0$ を考える。
- (1) 円 C の中心の座標は ($\boxed{}$ ケ , $\boxed{}$) であり、半径は $\sqrt{}$ である。
- (2) 直線 ℓ が円 C に接するとき,k= $\boxed{ }$ $\boxed{ }$ であり,直線 ℓ と円 C の接点の座標は($\boxed{ }$ $\boxed{ }$ ス $\boxed{ }$ 、 $\boxed{ }$ である。

解答

解答記号	正解
(ケ,コ)	(4, 5)
√ サ	$\sqrt{5}$
シ	2
(ス,セ)	(2, 6)

解説

- (1) $x^2 + y^2 8x 10y + 36 = 0$ は標準形では $(x 4)^2 + (y 5)^2 = 5$ であるから、中心は **(4, 5)**、半径は $\sqrt{5}$ である。
- (2) 直線 ℓ が円 C に接するための必要十分条件は、 ℓ と C の中心の距離が C の半径に一致することである。従って

$$\frac{|2 \cdot 4 - 5 + k|}{\sqrt{2^2 + (-1)^2}} = \sqrt{5} \iff |3 + k| = 5 \iff 3 + k = \pm 5 \iff k = 2, -8$$

k > 0 であったから答は k = 2.

また中心と接点を結ぶ直線は接線に直交するので、傾きは $-\frac{1}{2}$ であり、その方程式は

$$y = -\frac{1}{2}(x-4) + 5 = -\frac{1}{2}x + 7$$
 である. これと $2x - y + 2 = 0$ を連立させて、接点 (2, 6) を得る. (C と l を連立させてもよい。)

3. 第6項が11, 第25項が49である等差数列 $\{a_n\}$ と、第3項が18, 第6項が486である等比数列 $\{b_n\}$ がある。

$$\{a_n\}, \{b_n\}$$
 の一般項はそれぞれ $a_n=$ $\begin{bmatrix} y \\ n- \\ \end{bmatrix}$ $n \begin{bmatrix} g \\ \end{bmatrix}$, $b_n=$ $\begin{bmatrix} \mathcal{F} \\ \end{bmatrix}$ \cdot $\begin{bmatrix} y \\ \end{bmatrix}$ である。

 $c_n = a_n b_n$ で定められる数列 $\{c_n\}$ において、初項から第 n 項までの和を S_n とすると、

$$S_n =$$
 $egin{bmatrix} ar{ au} & \cdot & ar{ au} & ar{ au} & \cdot & ar{ au} & ar{ au} & \cdot & a$

解答

解答記号	正解
ソ n - タ	2n-1
$\mathcal{F} \cdot \mathcal{V}^{n-1}$	$2 \cdot 3^{n-1}$
$\overline{ \cdot \cdot } \cdot \overline{ } \overline{ } \overline{ } \cdot \overline{ } \cdot \overline{ } \overline{ } \cdot \overline{ } $	$2 \cdot 3^n(n-1) + 2$

注釈

ここで、数列 $\{b_n\}$ の各項は実数であると解釈している。本来は解答が複数あり、解答枠に収まらず解答できない。

解説

(1) 等差数列 $\{a_n\}$ の初項を a, 公差を d とすると,

$$\begin{cases} a+5d=11\\ a+24d=49 \end{cases}$$

である. これを解いて (a, d) = (1, 2). したがって, $a_n = 1 + (n-1) \cdot 2 = 2n-1$ である. 同様に, 等比数列 $\{b_n\}$ の初項を b, 公比を r とおくと,

$$\begin{cases} br^2 = 18 \\ br^5 = 486 \end{cases}$$

である。これを解くと, $(b, r) = (2, 3), \left(-1 \pm \sqrt{3}i, \frac{-3 \pm 3\sqrt{3}i}{2}\right)$ (複号同順) であるので, $b_n = \mathbf{2} \cdot \mathbf{3}^{n-1} \, \, \sharp \, \hbar \, l \, \sharp \, b_n = \frac{2}{3} \left(\frac{-3 \pm 3\sqrt{3}i}{2}\right)^n \, \,$ である。

(2) $b_n = 2 \cdot 3^{n-1}$ のとき,

$$S_n/2 = 1 \cdot 1 + 3 \cdot 3 + 5 \cdot 3^2 + 7 \cdot 3^3 + \dots + (2n-1) \cdot 3^{n-1}$$
 ... ① $3S_n/2 = 1 \cdot 3 + 3 \cdot 3^2 + 5 \cdot 3^3 + \dots + (2n-3) \cdot 3^{n-1} + (2n-1) \cdot 3^n \dots$ ②

 $(1) - (2) \sharp 0$,

$$-S_n = 1 + 2 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3 + \dots + 2 \cdot 3^{n-1} - (2n-1) \cdot 3^n$$
$$= 1 + \frac{6(3^{n-1} - 1)}{3 - 1} - (2n - 1) \cdot 3^n$$
$$= -2(n-1) \cdot 3^n - 2$$

となるので、 $S_n = 2 \cdot 3^n (n-1) + 2$ である.

$$b_n = \frac{2}{3} \left(\frac{-3 \pm 3\sqrt{3}i}{2} \right)^n$$
 のとき、同様に計算して、

$$S_n = \frac{47 \mp 29\sqrt{3}i}{169} - \left(\frac{-14 \pm 2\sqrt{3}i}{13}n + \frac{47 \mp 29\sqrt{3}i}{169}\right) \left(\frac{-3 \pm 3\sqrt{3}i}{2}\right)^n$$
 (複号同順) である.

4. AB=6, AC=4 である $\triangle ABC$ において,辺 AB を 4:3 に内分する点を D とし,辺 AC を 2:1 に内分する点を E とする。

また、線分 BE と線分 CD の交点を P とし、∠BAC の二等分線と辺 BC の交点を Q とするとき、

解答

解答記号	正解
$\overrightarrow{AB} + \overrightarrow{AC}$	$4\overrightarrow{AB} + 6\overrightarrow{AC}$
	13
ヒフ	10
ヘホ	13

解説

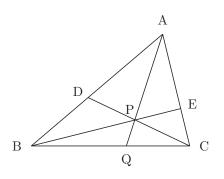
P は直線 BE, および CD 上にあるので,

$$\overrightarrow{AP} = (1 - s)\overrightarrow{AB} + s\overrightarrow{AE}$$

$$= (1 - s)\overrightarrow{AB} + \frac{2}{3}s\overrightarrow{AC}$$

$$\overrightarrow{AP} = (1 - t)\overrightarrow{AD} + t\overrightarrow{AC}$$

$$= \frac{4}{7}(1 - t)\overrightarrow{AB} + t\overrightarrow{AC}$$



とおける。 \overrightarrow{AB} 、 \overrightarrow{AC} は一次独立であるから、係数比較により

$$\begin{cases} 1 - s = \frac{4}{7}(1 - t) \\ \frac{2}{3}s = t \end{cases} \iff s = \frac{9}{13}, \ t = \frac{6}{13}$$

を得るので,

$$\overrightarrow{AP} = \frac{4\overrightarrow{AB} + 6\overrightarrow{AC}}{13}$$

である.

また、角の二等分線の性質から BQ: CQ = AB: AC = 3:2 なので、

$$\overrightarrow{AQ} = \frac{2\overrightarrow{AB} + 3\overrightarrow{AC}}{5}$$

であるから,

$$\overrightarrow{AP} = \frac{10}{13} \overrightarrow{AQ}$$

となる. ゆえに 3 点 A, P, Q は一直線上にある.

別解

→ AP を求める際は、メネラウスの定理を用いてもよい。その場合、

$$\frac{AD}{DB} \cdot \frac{BP}{PE} \cdot \frac{EC}{CA} = 1 \quad \text{\sharp b} \quad BP: PE = 9: 4$$

が分かるので,

$$\overrightarrow{AP} = \frac{4\overrightarrow{AB} + 9\overrightarrow{AE}}{13} = \frac{4\overrightarrow{AB} + 6\overrightarrow{AB}}{13}$$

と求まる.

また、与えられた内分比から点 A, B, C にそれぞれ 3, 4, 6 の重さのおもりが乗っていると見れば

$$BP : PE = (3+6) : 4 = 9 : 4, \quad CP : PD = (3+4) : 6 = 7 : 6$$

と線分比を求めることもできる.

- 5. 次の(1),(2)の問いに答えよ。
- (1) 整数 x, y が不定方程式 11x + 4y = 1 を満たすとき、|2x y| の最小値は $\overline{ }$ $\overline{ }$ である。
- (2) x, y は自然数とする。等式 $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ を変形すると $(x \square \xi)(y \square \Delta) = \square X$ となる。

この式を満たす $x,\ y$ の組のうち,x の値が最も大きい組は x= $\boxed{}$ モ $\boxed{}$, y= $\boxed{}$ である。

また, $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ と $a^x = b^y = 4096$ を同時に満たす整数 a,b の組は全部で \Box 個ある。

解答

解答記号	正解
マ	5
$(x-\tilde{\mathbf{z}})(y-\Delta) = \mathbf{X}$	(x-2)(y-2) = 4
$x = \mp, \ y = 7$	x = 6, y = 3
ユ 個	8 個

解説

(1) 11x+4y=1 が (x,y)=(-1,3) を解に持つことは容易にわかるので、11x+4y=1 と $11\cdot(-1)+4\cdot3=1$ を辺々引いて 11(x+1)+4(y-3)=0 を得る。移項すると 11(x+1)=4(3-y) となるが、左辺は 11 の倍数、右辺は 4 の倍数であり、11, 4 は互いに素であるから $11(x+1)=4(3-y)=11\times 4k$ (k は整数)とおくことが出来る。これより不定方程式 11x+4y=1 の一般解 (x,y)=(4k-1,-11k+3) を得る。

これを代入すると |2x-y|=|2(4k-1)-(-11k+3)|=|19k-5| となるので,k=0 のときに最小値 **5** をとることがわかる.

- (2) $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ の両辺に 2xy をかけると 2y + 2x = xy となる.これを変形すると $(x \mathbf{2})(y \mathbf{2}) = \mathbf{4}$ となる.x 2, y 2 ともに整数であるから (x 2, $y 2) = (\pm 4$, ± 1), $(\pm 2$, ± 2), $(\pm 1$, ± 4) (複号同順) つまり (x, y) = (6, 3), (4, 4), (3, 6), (-2, 1), (0, 0), (1, -2), が (x, y) の整数としての解の候補であるが,与えられた式の自然数解は (6, 3), (4, 4), (3, 6) の 3 つで,x の値が最も大きいものは $x = \mathbf{6}$, $y = \mathbf{3}$ である.また,
 - (i) (x, y) = (6, 3) のとぎ $a^x = b^y = 4096$ つまり $a^6 = b^3 = 2^{12}$ の整数解は $(a, b) = (\pm 4, 16)$ の 2 つ.
 - (ii) (x, y) = (4, 4) のとき $a^x = b^y = 4096$ つまり $a^4 = b^4 = 2^{12}$ の整数解は $(a, b) = (\pm 8, \pm 8)$ (複号任意) の 4 つ.
 - (iii) (x, y) = (3, 6) のとき $a^x = b^y = 4096$ つまり $a^3 = b^6 = 2^{12}$ の整数解は $(a, b) = (16, \pm 4)$ の 2 つ. 以上より整数 a,b の組は全部で 8 個ある.

講評

1. [数と式] (易)

無理数の整数部分,小数部分に関する問題である. 小数として $5+\sqrt{3}=6.73$ … と計算したら $a=6,b=(5+\sqrt{3})-6$ とわかる. $\frac{b}{2}+\frac{1}{b}$ と $\frac{b^3}{8}+\frac{1}{b^3}$ を見れば,後者は前者の 3 乗の展開式の一部だと気付くだろう. 実際に 3 乗してから差について考慮すればよい.

2. [図形と式] (易)

円と直線が接する問題では判別式を使うよりも点と直線の距離を用いる方が楽である。接点も、実際に連立させて解(重解)を求めてもよいが、中心と接点を通る直線が接線に垂直である事実を用いてもよい。その場合連立一次方程式で解くことが出来る。

3. 「数列」(やや易)

等差数列と等比数列の一般項を求める問題は基本中の基本問題,等差 \times 等比の和を求める問題も基本問題である. ていねいに計算して確実に正解したい.n=1,2 といった値での検算を怠らないように.(注;解答では, $\{b_n\}$ の各項が実数であるものと解釈した)

4. 「平面ベクトル」(易)

平面上の2直線の交点を求める問題で、平面ベクトルの典型的な基本問題。メネラウスの定理やおもりの考え方を 用いるともっと容易に解ける。

- 5. 「整数」(やや易~標準)
- (1) は典型的な 1 次不定方程式の問題. 特殊解も容易に見つかるので、x, y の一般解を求めて |2x-y| に代入すればよい. ここは是非正解したい。(2) も前半は典型的な問題なので正解したい。後半は、x, y とは違って a, b が「整数」なので負数も含むことに注意する必要がある。

大問数は5間で例年通りだが、昨年度までは記述形式(証明問題を含む)であったのが今年度はマーク形式となった。そのためか昨年度までより解きやすい問題が増えている。全体を通して如何に計算を合わせ切れたかの勝負と思われる。目標点は90%。

本解答速報の内容に関するお問合せはメビオ 20120-146-156まで

☎ 03-3370-0410

受付時間 8~20時 土日祝可 https://yms.ne.jp/ 東京都渋谷区代々木 1-37-14

